One nanometer resolution electrical probe via atomic metal filament formation.

نویسندگان

  • Seung Sae Hong
  • Judy J Cha
  • Yi Cui
چکیده

Scanning probe microscopy has been widely used to investigate various interactions in microscopic nature. Particularly, conductive atomic force microscopy (C-AFM) can provide local electronic signals conveniently, but the probe resolution of C-AFM has been limited by the tip geometry. Here, we improve the probe resolution greatly by forming an atomic-size metallic filament on a commercial C-AFM tip. We demonstrate ∼1 nm lateral resolution in C-AFM using the metal filament tip. The filament tip is mechanically robust and electrically stable in repeated scans under ambient conditions since it is imbedded in a stable insulating matrix. The formation of the atomic filament is highly controllable and reproducible and can be easily integrated to existing AFM tip technologies to produce the next generation of high-resolution electrical and other scanning probes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization.

We introduce a new type of microscopy which is capable of investigating surface topography and electrical property of conductive and dielectric materials simultaneously on a nanometer scale. The microwave atomic force microscopy is a combination of the principles of the scanning probe microscope and the microwave-measurement technique. As a result, under the noncontact AFM working conditions, w...

متن کامل

Formation and characterization of nanometer scale metal-oxide-semiconductor structures on GaAs using low-temperature atomic layer deposition

Atomic layer deposition ALD grown Al2O3 has excellent bulk and interface properties on III-V compound semiconductors and is used as gate dielectric for GaAs and GaN metal-oxide-semiconductor field-effect transistors MOSFETs . The low-temperature LT ALD technology enables us to fabricate 100 nm MOS structures on GaAs, defined by nanoimprint lithography. The electrical characterization of these n...

متن کامل

Introduction to Scanning Probe Microscopy

Today’s research laboratory is required to solve difficult problems that span multiple disciplines. Advanced techniques are required to answer pressing questions related to adhesion, bonding, contamination and surface cleanliness, corrosion, surface morphology, surface roughness, surface topography, failure analysis, process monitoring, surface chemistry, biological characterization, local surf...

متن کامل

Noncontact atomic force microscopy II

In order to visualize the atomic structure of materials in real space, a microscope with sub-nanometer resolution is needed. As such, breaking the resolution limit associated with the wavelength of visible light employed in traditional optical microscopy has been a long-standing dream of scientists around the world. This goal was finally reached in the early 1980s with the invention of the scan...

متن کامل

Design and fabrication of a high-Q near-field probe for subsurface crack detection

Non-destructive detection and evaluation of invisible cracks in metal structures is an important matter in several critical environments including ground transportation, air transportation and power plants. In this paper, a high-Q near-field Microwave probe is designed and fabricated using defected ground structures for surface and subsurface crack detection in metal structures. For this purpos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2011